Author:
Shumway Caroly,Morissette Josée,Bower James M.
Abstract
Our previous studies showed that fractured tactile cerebellar maps in rats reorganize after deafferentation during development and in adulthood while maintaining a fractured somatotopy. Several months after deafferentation of the infraorbital branch of the trigeminal nerve, the missing upper lip innervation is replaced in the tactile maps in the granule cell layer of crus IIa. The predominant input into the denervated area is always the upper incisor representation. This study examined whether this reorganization was caused by mechanisms intrinsic to the cerebellum or extrinsic, i.e., occurring in somatosensory structures afferent to the cerebellum. We first compared normal and deafferented maps and found that the expansion of the upper incisor is not caused by a preexisting bias in the strength or abundance of upper incisor input in normal animals. We then mapped tactile representations before and immediately after denervation. We found that the pattern of reorganization observed in the cerebellum several months later is not caused by unmasking of a silent or weaker upper incisor representation. Both results indicate that the reorganization is not a result of subsequent growth or sprouting mechanism within the cerebellum itself. Finally, we compared postlesion maps in the cerebellum and the somatosensory cortex. We found that the upper incisor representation significantly expands in both regions and that this expansion is correlated, suggesting that reorganization in the cerebellum is a passive consequence of reorganization in afferent cerebellar pathways. This result has important developmental and functional implications.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computational Structure of the Cerebellar Molecular Layer;Handbook of the Cerebellum and Cerebellar Disorders;2021-12-05
2. Cerebellar Granule Cell;Handbook of the Cerebellum and Cerebellar Disorders;2021-12-05
3. Cerebellar Granule Cell;Handbook of the Cerebellum and Cerebellar Disorders;2020-11-04
4. Physiology of the cerebellum;The Cerebellum: From Embryology to Diagnostic Investigations;2018
5. Purkinje cell intrinsic excitability increases after synaptic long term depression;Journal of Neurophysiology;2016-09-01