Affiliation:
1. Section on Synaptic Transmission, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
Abstract
Because of the availability of disease and genetic models, the mouse has become a valuable species for auditory neuroscience that will facilitate long-term goals of understanding neuronal mechanisms underlying the perception and processing of sounds. The goal of this study was to define the basic sound-evoked response properties of single neurons in the mouse dorsal cochlear nucleus (DCN). Neurons producing complex spikes were distinguished as cartwheel cells (CWCs), and other neurons were classified according to the response map scheme previously developed in DCN. Similar to observations in other rodent species, neurons of the mouse DCN exhibit relatively little sound-driven inhibition. As a result, type III was the most commonly observed response. Our findings are generally consistent with the model of DCN function that has been developed in the cat and the gerbil, suggesting that this in vivo mouse preparation will be a useful tool for future studies of auditory physiology.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献