Behavioral training restores temporal processing in auditory cortex of long-deaf cats

Author:

Vollmer Maike12,Beitel Ralph E.2

Affiliation:

1. Comprehensive Hearing Center, Department of Otolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany; and

2. Saul and Ida Epstein Laboratory, Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, California

Abstract

Temporal auditory processing is poor in prelingually hearing-impaired patients fitted with cochlear prostheses as adults. In an animal model of prelingual long-term deafness, we investigated the effects of behavioral training on temporal processing in the adult primary auditory cortex (AI). Neuronal responses to pulse trains of increasing frequencies were recorded in three groups of neonatally deafened cats that received a cochlear prosthesis after >3 yr of deafness: 1) acutely implanted animals that received no electric stimulation before study, 2) animals that received chronic-passive stimulation for several weeks to months before study, and 3) animals that received chronic-passive stimulation and additional behavioral training (signal detection). A fourth group of normal adult cats that was deafened acutely and implanted served as controls. The neuronal temporal response parameters of interest included the stimulus rate that evoked the maximum number of phase-locked spikes [best repetition rate (BRR)], the stimulus rate that produced 50% of the spike count at BRR (cutoff rate), the peak-response latency, and the first spike latency and timing-jitter. All long-deaf animals demonstrated a severe reduction in spiral ganglion cell density (mean, <6% of normal). Long-term deafness resulted in a significantly reduced temporal following capacity and spike-timing precision of cortical neurons in all parameters tested. Neurons in deaf animals that received only chronic-passive stimulation showed a gain in BRR but otherwise were similar to deaf cats that received no stimulation. In contrast, training with behaviorally relevant stimulation significantly enhanced all temporal processing parameters to normal levels with the exception of minimum latencies. These results demonstrate the high efficacy of learning-based remodeling of fundamental timing properties in cortical processing even in the adult, long-deaf auditory system, suggesting rehabilitative strategies for patients with long-term hearing loss.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3