Affiliation:
1. Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania;
2. Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
Abstract
Insulin acts within the central nervous system to regulate food intake and sympathetic nerve activity (SNA). Strong evidence indicates that glucocorticoids impair insulin-mediated glucose uptake and food intake. However, few data are available regarding whether glucocorticoids also modulate the sympathoexcitatory response to insulin. Therefore, the present study first confirmed that chronic administration of glucocorticoids attenuated insulin-induced increases in SNA and then investigated whether these effects were attributed to deficits in central insulin-mediated responses. Male Sprague-Dawley rats were given access to water or a drinking solution of the glucocorticoid agonist dexamethasone (0.3 μg/ml) for 7 days. A hyperinsulinemic-euglycemic clamp significantly increased lumbar SNA in control rats. This response was significantly attenuated in rats given access to dexamethasone for 7, but not 1, days. Similarly, injection of insulin into the lateral ventricle or locally within the arcuate nucleus (ARC) significantly increased lumbar SNA in control rats but this response was absent in rats given access to dexamethasone. The lack of a sympathetic response to insulin cannot be attributed to a generalized depression of sympathetic function or inactivation of ARC neurons as electrical activation of sciatic afferents or ARC injection of gabazine, respectively, produced similar increases in SNA between control and dexamethasone-treated rats. Western blot analysis indicates insulin produced similar activation of Akt Ser473 and rpS6 Ser240/244 in the ventral hypothalamus of control and dexamethasone-treated rats. Collectively, these findings suggest that dexamethasone attenuates the sympathoexcitatory actions of insulin through a disruption of ARC neuronal function downstream of Akt or mammalian target of rapamycin (mTOR) signaling.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献