Direct and Indirect Actions of Dopamine on the Membrane Potential in Medium Spiny Neurons of the Mouse Neostriatum

Author:

Yasumoto S.12,Tanaka E.1,Hattori G.1,Maeda H.2,Higashi H.1

Affiliation:

1. Department of Physiology and

2. Department of Psychiatry, Kurume University School of Medicine, Kurume 830-0011, Japan

Abstract

Many studies have shown dopamine (DA) to have a modulatory effect on neuronal excitability, which cannot be simply classified as excitatory or inhibitory in the neostriatum. To clarify whether the responses to DA (10–30 μM) are excitatory or inhibitory in the mouse medium spiny neurons, we examined the effects of DA agonists on the synchronous potential trajectory from the resting potential to the subthreshold potential. The DA-induced potential changes, which were estimated at the subthreshold potential (approximately −60 mV), were summarized as the combination of three kinds of responses: an initial hyperpolarization lasting approximately 1 min and a slow depolarization and/or hyperpolarization lasting more than 20 min. A D1-like receptor agonist, R(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF81297, 1 μM) mainly induced the initial hyperpolarization and slow depolarization. A D2-like receptor agonist, trans-(−)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline hydrochloride (quinpirole, 1 μM), mainly induced the initial hyperpolarization and slow hyperpolarization. D1-like receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390, 1 μM) depressed both the initial hyperpolarization and slow depolarization. D2-like receptor antagonist sulpiride (1 μM) depressed all the DA-induced responses except for the slow depolarization. TTX (0.5 μM) abolished all the DA-induced responses. Bicuculline (20 μM) and atropine (1 μM) abolished the DA-induced initial hyperpolarization and slow depolarization, respectively. Eitherdl-2-amino-5-phosphonopentanoic acid (AP5; 100 μM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 20 μM) blocked both the initial hyperpolarization and slow depolarization. The application of exogenous glutamate (Glu) mimicked the initial hyperpolarization and slow depolarization. These results suggest that the initial hyperpolarization is mainly due to GABA release via the cooperative action of D1- and D2-like receptors and Glu receptors in GABAergic interneurons, whereas the slow depolarization is mediated by acetylcholine (ACh) release via the cooperative action of mainly D1-like receptors and Glu receptors in cholinergic interneurons. The potential oscillation was generated at the subthreshold level in a Ba2+-, AP5-, CNQX-, bicuculline-, and atropine-containing medium. The oscillation depressed after the addition of TTX, Co2+, or DA. In DA agonists, quinpirole rather than SKF81297 had a more depressive effect on the potential oscillation. These results indicate that the slow hyperpolarization is due to the suppression of noninactivating Na+-Ca2+ conductances via mainly D2-like receptors in the medium spiny neurons. In conclusion, the DA actions on the medium spiny neurons show a transient inhibition by the activation of D1- and D2-like receptors in mainly GABAergic interneurons and a tonic excitation and/or inhibition by the activation of mainly D1-like receptors in cholinergic interneurons and by the activation of mainly D2-like receptors in the medium spiny neurons, respectively.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3