Fast feedback control involves two independent processes utilizing knowledge of limb dynamics

Author:

Kurtzer Isaac1,Crevecoeur Frédéric2,Scott Stephen H.23

Affiliation:

1. Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York;

2. Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; and

3. Department of Medicine, Queen's University, Kingston, Ontario, Canada

Abstract

Corrective muscle responses occurring 50–100 ms after a mechanical perturbation are tailored to the mechanical features of the limb and its environment. For example, the evoked response by the shoulder's extensor muscle counters an imposed shoulder torque, rather than local shoulder motion, by integrating motion information from the shoulder and elbow appropriate for their dynamic interaction. Previous studies suggest that arm muscle activity within this epoch, alternately termed the R2/3 response, or long-latency reflex, reflects the summed result of two distinct components: an activity-dependent component which scales with the background muscle activity, and a task-dependent component which scales with the required vigor of the behavioral task. Here we examine how the knowledge of limb dynamics expressed during the shoulder muscle's R2/3 epoch is related to these two functional components. Subjects countered torque steps applied to their shoulder and/or elbow under different conditions of background torque and target size to recruit the activity-dependent and task-dependent component in varying degrees. Experiment 1 involved four torque perturbations, two levels of background torques and two target sizes; this design revealed that both background torque and target size impacted the shoulder's R2/3 activity, indicative of knowledge of limb dynamics. Experiment 2 involved two perturbation torques, five levels of background torque and two target sizes; this design demonstrated that the two factors had an independent impact on the R2/3 activity indicative of knowledge of limb dynamics. We conclude that a sophisticated feature of upper limb feedback control reflects the summation of two processes having a common capability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3