Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle

Author:

Hadsell Darryl L.12,Olea Walter1,Wei Jerry1,Fiorotto Marta L.1,Matsunami Risë K.3,Engler David A.34,Collier Robert J.5

Affiliation:

1. USDA/ARS Children's Nutrition Research Center, Department of Pediatrics,

2. Department of Molecular and Cellular Biology, Baylor College of Medicine;

3. Department of Molecular Biology and Proteomics, Texas Heart Institute;

4. Department of Internal Medicine University of Texas Medical School, Houston, Texas; and

5. Department of Animal Sciences, University of Arizona, Tucson, Arizona

Abstract

The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypothesis tested was that changes in mammary cell mitochondrial biogenesis and function during lactation would be accounted for by coordinated changes in the proteins of the electron transport chain and that some of these proteins might be linked by their expression patterns to PPARGC1α and AMP kinase. The mitochondrial proteome was studied along with markers of mitochondrial biogenesis and function in mammary tissue collected from mice over the course of a single prolonged lactation cycle. Mammary tissue concentrations of AMP and ADP were increased ( P < 0.05) during early lactation and then declined with prolonged lactation. Similar changes were also observed for mitochondrial ATP synthesis activity, mitochondrial mass and DNA copy number. Analysis of the mammary cell mitochondrial proteome identified 244 unique proteins. Of these, only two proteins of the electron transport chain were found to increase during early lactation. In contrast, coordinated changes in numerous electron transport chain proteins were observed both during mid- and late lactation. There were six proteins that could be directly linked to PPARGC1α through network analysis. Abundance of PPARGC-1α and phosphorylation of AMP kinase was highest on day 2 postpartum. The results suggest that the increases in mammary mitochondria ATP synthesis activity during early lactation results from changes in only a limited number proteins. In addition, decreases in a handful of proteins linked to lipid oxidation could be temporally linked to decreases in PPARGC1α and phospho-AMP kinase suggesting potential roles for these proteins in coordinating mammary gland metabolism during early lactation.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3