Comparative SAGE analysis of the response to hypoxia in human pulmonary and aortic endothelial cells

Author:

Peters D. G.123,Ning W.124,Chu T. J.5,Li C. J.12,Choi A. M. K.12

Affiliation:

1. Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh

2. Lung Translational Genomics Center, Department of Medicine, University of Pittsburgh, Pittsburgh

3. Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom

4. Model Animal Research Center, Nanjing University, Nanjing, China

5. Institute for Human and Machine Cognition, University of West Florida, Pensacola, Florida

Abstract

We utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human pulmonary artery endothelial cells (HPAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HPAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same-passage cells cultured under standard (5% CO2-95% air) conditions. Hierarchical clustering of significant hypoxia-responsive genes identified temporal changes in the expressions of a number of well-described gene families including those encoding proteins involved in thrombosis, stress response, apoptosis, angiogenesis, and cell proliferation. These experiments build on previously published data describing the transcriptomic response of human aortic endothelial cells (HAECs) obtained from the same donor and cultured under identical conditions, and we have thus taken advantage of the immortality of SAGE data to make direct comparisons between these two data sets. This approach revealed comprehensive information relating to the similarities and differences at the level of mRNA expression between HAECs and HPAECs. For example, we found differences in the cell type-specific response to hypoxia among genes encoding cytoskeletal factors, including paxillin, and proteins involved in metabolic energy production, the response to oxidative stress, and vasoreactivity (e.g., endothelin-1). These efforts contribute to the expanding collection of publicly available SAGE data and provide a foundation on which to base further efforts to understand the characteristics of the vascular response to hypoxia in the pulmonary circulation relative to systemic vasculature.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3