Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading

Author:

Thalacker-Mercer Anna E.12,Dell'Italia Louis J.13,Cui Xiangqin4,Cross James M.5,Bamman Marcas M.1236

Affiliation:

1. Departments of 1Physiology and Biophysics,

2. Nutrition Sciences,

3. Medicine,

4. Biostatistics,

5. Surgery, University of Alabama at Birmingham; and

6. Geriatric Research, Education, and Clinical Center, Birmingham Department of Veterans Affairs Medical Center, Birmingham, Alabama

Abstract

Across numerous model systems, aging skeletal muscle demonstrates an impaired regenerative response when exposed to the same stimulus as young muscle. To better understand the impact of aging in a human model, we compared changes to the skeletal muscle transcriptome induced by unaccustomed high-intensity resistance loading (RL) sufficient to cause moderate muscle damage in young (37 yr) vs. older (73 yr) adults. Serum creatine kinase was elevated 46% 24 h after RL in all subjects with no age differences, indicating similar degrees of myofiber membrane wounding by age. Despite this similarity, from genomic microarrays 318 unique transcripts were differentially expressed after RL in old vs. only 87 in young subjects. Follow-up pathways analysis and functional annotation revealed among old subjects upregulation of transcripts related to stress and cellular compromise, inflammation and immune responses, necrosis, and protein degradation and changes in expression (up- and downregulation) of transcripts related to skeletal and muscular development, cell growth and proliferation, protein synthesis, fibrosis and connective tissue function, myoblast-myotube fusion and cell-cell adhesion, and structural integrity. Overall the transcript-level changes indicative of undue inflammatory and stress responses in these older adults were not mirrored in young subjects. Follow-up immunoblotting revealed higher protein expression among old subjects for NF-κB, heat shock protein (HSP)70, and IL-6 signaling [total and phosphorylated signal transducer and activator of transcription (STAT)3 at Tyr705]. Together, these novel findings suggest that young and old adults are equally susceptible to RL-mediated damage, yet the muscles of older adults are much more sensitive to this modest degree of damage—launching a robust transcriptome-level response that may begin to reveal key differences in the regenerative capacity of skeletal muscle with advancing age.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3