Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy

Author:

Fogle Rachel L.1,Hollenbeak Christopher S.2,Stanley Bruce A.3,Vary Thomas C.1,Kimball Scot R.1,Lynch Christopher J.1

Affiliation:

1. Department of Cellular and Molecular Physiology,

2. Departments of Surgery and of Public Health Sciences, and

3. Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, Pennsylvania

Abstract

Long-term ethanol exposure leads to a sexually dimorphic response in both the susceptibility to cardiac pathology (protective effect of the female heart) and the expression of selected myocardial proteins. The purpose of the present study was to use proteomics to examine the effect of chronic alcohol consumption on a broader array of cardiac proteins and how these were affected between the sexes. Male and female rats were maintained for 18 wk on a 40% ethanol-containing diet in which alcohol was provided in drinking water and agar blocks. Differences in the content of specific cardiac proteins in isopycnic centrifugal fractions were determined using mass spectrometry on iTRAQ-labeled tryptic fragments. A random effects model of meta-analysis was developed to combine the results from multiple iTRAQ experiments. Analysis of a network of proteins involved in cardiovascular system development and function showed that troponins were oppositely regulated by alcohol exposure in females (upregulated) vs. males (downregulated), and this effect was validated by Western blot analysis. Pathway analysis also revealed that alcohol-consuming males showed increased expression of proteins involved in various steps of oxidative phosphorylation including complexes I, III, IV, and V, whereas females showed no change or decreased content. One implication from these findings is that females may be protected from the toxic effects of alcohol due to their ability to maintain contractile function, maintain efficiency of force generation, and minimize oxidative stress. However, the alcohol-induced insult may lead to increased production of reactive oxygen species and structural abnormalities in male myocardium.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3