Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy

Author:

Widrick Jeffrey J.12,Alexander Matthew S.12,Sanchez Benjamin3ORCID,Gibbs Devin E.1,Kawahara Genri12,Beggs Alan H.14,Kunkel Louis M.1245

Affiliation:

1. Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts;

2. Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts;

3. Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts;

4. The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts; and

5. Harvard Stem Cell Institute, Cambridge, Massachusetts

Abstract

Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4–7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30–60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30–70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5–10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening.

Funder

HHS | National Institutes of Health (NIH)

HHS | National Institutes of Health| Wellstone Center

Muscular Dystrophy Association (USA)

Boston Children's Hospital Intellectual and Developmental Disabilities Research Center

AUism Charitable Foundation

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3