Circadian profiling of the transcriptome in immortalized rat SCN cells

Author:

Menger Gus J.12,Lu Kim2,Thomas Terry12,Cassone Vincent M.12,Earnest David J.312

Affiliation:

1. Center for Biological Clocks Research, Texas A & M University, College Station, Texas

2. Department of Biology, Texas A & M University, College Station, Texas

3. Department of Human Anatomy and Medical Neurobiology, Texas A & M University Health Science Center, College of Medicine, Texas

Abstract

Endogenous oscillations in gene expression are a prevalent feature of the circadian clock in the mammalian suprachiasmatic nucleus (SCN) and similar timekeeping systems in other organisms. To determine whether immortalized cells derived from the rat SCN (SCN2.2) retain these intrinsic rhythm-generating properties, oscillatory behavior of the SCN2.2 transcriptome was analyzed and compared with that found in the rat SCN in vivo using rat U34A Affymetrix GeneChips. In SCN2.2 cells, 116 unique genes and 46 ESTs or genes of unknown function exhibited circadian fluctuations with a 1.5-fold or greater difference in their mRNA abundance for two cycles. Many (35%) of these rhythmically regulated genes in SCN2.2 cells also exhibited circadian profiles of mRNA expression in the rat SCN in vivo. Functional analyses and cartography indicate that a diverse set of cellular pathways are strategically regulated by the circadian clock in SCN2.2 cells and that the largest categories of rhythmic genes are those involved in cellular and systems-level communication or in metabolic processes like cellular respiration, fatty acid recycling, and steroid synthesis. Because many of the same genes or nodes within these functional categories were rhythmically expressed in both SCN2.2 cells and the rat SCN, the circadian regulation of these pathways may be important in modulating input to or output from the SCN clock mechanism. In summary, global expression and circadian regulation of the SCN2.2 transcriptome retain many SCN-like properties, suggesting that genes displaying rhythmic profiles in both experimental models may be integral to their function as both circadian oscillators and pacemakers.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sex Inclusion in Transcriptome Studies of Daily Rhythms;Journal of Biological Rhythms;2022-11-23

2. The circadian regulation of extracellular ATP;Purinergic Signalling;2022-08-08

3. The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain;Cellular and Molecular Neurobiology;2022-02-18

4. Circadian clock rhythms in different adipose tissue model systems;Chronobiology International;2018-07-11

5. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu;Neurobiology of Sleep and Circadian Rhythms;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3