Cardiovascular phenotyping of fetal mice by noninvasive high-frequency ultrasound facilitates recovery of ENU-induced mutations causing congenital cardiac and extracardiac defects

Author:

Shen Yuan1,Leatherbury L.12,Rosenthal J.1,Yu Qing1,Pappas M. A.1,Wessels A.3,Lucas J.3,Siegfried B.1,Chatterjee B.1,Svenson Karen4,Lo C. W.1

Affiliation:

1. Laboratory of Developmental Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland

2. Pediatric Cardiology, Children’s National Medical Center, Washington, District of Columbia

3. Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, South Carolina

4. The Jackson Laboratory, Bar Harbor, Maine

Abstract

As part of a large-scale noninvasive fetal ultrasound screen to recover ethylnitrosourea (ENU)-induced mutations causing congenital heart defects in mice, we established a high-throughput ultrasound scanning strategy for interrogating fetal mice in utero utilizing three orthogonal imaging planes defined by the fetus’ vertebral column and body axes, structures readily seen by ultrasound. This contrasts with the difficulty of acquiring clinical ultrasound imaging planes which are defined by the fetal heart. By use of the three orthogonal imaging planes for two-dimensional (2D) imaging together with color flow, spectral Doppler, and M-mode imaging, all of the major elements of the heart can be evaluated. In this manner, 10,091 ENU-mutagenized mouse fetuses were ultrasound scanned between embryonic days 12.5 and 19.5, with 324 fetuses found to die prenatally and 425 exhibiting cardiovascular defects. Further analysis by necropsy and histology showed heart defects that included conotruncal anomalies, obstructive lesions, and shunt lesions as well as other complex heart diseases. Ultrasound imaging also identified craniofacial/head defects and body wall closure defects, which necropsy revealed as encephalocele, holoprosencephaly, omphalocele, or gastroschisis. Genome scanning mapped one ENU-induced mutation associated with persistence truncus arteriosus and holoprosencephaly to mouse chromosome 2, while another mutation associated with cardiac defects and omphalocele was mapped to mouse chromosome 17. These studies show the efficacy of this novel ultrasound scanning strategy for noninvasive ultrasound phenotyping to facilitate the recovery of ENU-induced mutations causing congenital heart defects and other extracardiac anomalies.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3