Affiliation:
1. Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
Abstract
Insulin-like growth factor 2 (IGF2), a small, secreted protein, is critical for fetal and prenatal growth in humans and other mammals. The IGF2 gene and its mouse homolog comprise part of a conserved linkage group that is regulated by parental imprinting, with IGF2/ Igf2 being expressed from the paternal chromosome, and the adjacent H19 gene from the maternal chromosome. By using information extracted from public genomic and gene expression databases, I have now analyzed this locus in nine nonhuman primate species representing over 60 million years of evolutionary divergence from a common progenitor. Both IGF2 and H19 genes and the entire locus have been conserved among these primates. Each primate IGF2 gene except for gibbon and marmoset is composed of 10 exons and contains five potential promoters, each with distinctive 5′-untranslated exons. Similarly, except for marmoset and mouse lemur, H19 consists of six exons and has two promoters. DNA sequence conservation is high, not only in orthologous exons and promoters, but also in a putative imprinting control region located 5′ to H19 and in multiple potential distal enhancer elements found 3′ to H19. Collectively, these results support the hypothesis that common regulatory processes shaped the IGF2 - H19 locus before the onset of primate speciation more than 85 million years ago. This study also leads to the conclusion that inaccuracies in data presentation in genetic repositories could limit our ability to develop novel insights about roles of individual genes and multigene loci in mammalian physiology and disease.
Funder
US National Institutes of Health
Publisher
American Physiological Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献