Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members

Author:

Wu Wei1,Baker Michael E.1,Eraly Satish A.1,Bush Kevin T.1,Nigam Sanjay K.1

Affiliation:

1. Departments of Pediatrics, Medicine, and Cellular Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California

Abstract

When the organic anion transporter Oat1 was first identified as NKT (Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. J Biol Chem 272: 6471–6478, 1997), it was argued that it, together with Oct1, may be part of a larger subfamily (now known as SLC22) involved in organic ion and xenobiotic transport. The least studied among SLC22 transporters are the so-called unknown substrate transporters ( USTs). Here, five novel genes located in a cluster on mouse chromosome 19, immediately between Slc22a8 ( Oat3)/ Slc22a6 ( Oat1) and Slc22a19 ( Oat5), were identified as homologs of human USTs. These genes display preferential expression in liver and kidney, and one gene, AB056422, has several splicing variants with differential tissue expression and embryonic expression. Along with Slc22a6, Slc22a8, and Slc22a19, these Usts define the largest known cluster of mammalian Slc22 genes. Given the established functions of Oats, these genes may also be involved in organic anion transport. Usts have characteristic motifs and share a signature residue in the possible active site of transmembrane domain 7, a conserved, positively charged, amino acid, Arg356, possibly a site for interaction with organic anions. In certain species, Oat1 and Oat3 appeared to be highly conserved, whereas the Ust part of this cluster appeared to undergo repeated species-specific amplification, suggesting strong environmental selection pressure, and perhaps providing an explanation for copy number variation in the human locus. One Ust amplification in mouse appears to be recent. This cluster may be coordinately regulated and under selective pressure in a species-specific manner.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3