Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies

Author:

Tarnavski Oleg1,McMullen Julie R.1,Schinke Martina1,Nie Qing1,Kong Sekwon1,Izumo Seigo1

Affiliation:

1. Cardiovascular Research Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215

Abstract

Mouse models mimicking human diseases are important tools in trying to understand the underlying mechanisms of many disease states. Several surgical models have been described that mimic human myocardial infarction (MI) and pressure-overload-induced cardiac hypertrophy. However, there are very few detailed descriptions for performing these surgical techniques in mice. Consequently, the number of laboratories that are proficient in performing cardiac surgical procedures in mice has been limited. Microarray technologies measure the expression of thousands of genes simultaneously, allowing for the identification of genes and pathways that may potentially be involved in the disease process. The statistical analysis of microarray experiments is highly influenced by the amount of variability in the experiment. To keep the number of required independent biological replicates and the associated costs of the study to a minimum, it is critical to minimize experimental variability by optimizing the surgical procedures. The aim of this publication was to provide a detailed description of techniques required to perform mouse cardiac surgery, such that these models can be utilized for genomic studies. A description of three major surgical procedures has been provided: 1) aortic constriction, 2) pulmonary artery banding, 3) MI (including ischemia-reperfusion). Emphasis has been placed on technical procedures with the inclusion of thorough descriptions of all equipment and devices employed in surgery, as well as the application of such techniques for expression profiling studies. The cardiac surgical techniques described have been, and will continue to be, important for elucidating the molecular mechanisms of cardiac hypertrophy and failure with high-throughput technology.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3