Chronic hypoxia changes gene expression profile of primary rat carotid body cells: consequences on the expression of NOS isoforms and ET-1 receptors

Author:

Mosqueira Matías12ORCID,Iturriaga Rodrigo1

Affiliation:

1. Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago Chile

2. Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany

Abstract

Sustained chronic hypoxia (CH) produces morphological and functional changes in the carotid body (CB). Nitric oxide (NO) and endothelin-1 (ET-1) play a major role as modulators of the CB oxygen chemosensory process. To characterize the effects of CH related to normoxia (Nx) on gene expression, particularly on ET-1 and NO pathways, primary cultures of rat CB cells were exposed to 7 days of CH. Total RNA was extracted, and cDNA-32P was synthesized and hybridized with 1,185 genes printed on a nylon membrane Atlas cDNA Expression Array. Out of 324 differentially expressed genes, 184 genes were upregulated, while 140 genes were downregulated. The cluster annotation and protein network analyses showed that both NO and ET-1 signaling pathways were significantly enriched and key elements of each pathway were differentially expressed. Thus, we assessed the effect of CH at the protein level of nitric oxide synthase (NOS) isoforms and ET-1 receptors. CH induced an increase in the expression of endothelial NOS, inducible NOS, and ETB. During CH, the administration of SNAP, a NO donor, upregulated ETB. Treatment with Tezosentan (ET-1 receptor blocker) during CH upregulated all three NOS isoforms, while the NOS blocker L-NAME induced upregulation of iNOS and ETB and downregulated the protein levels of ETA. These results show that CH for 7 days changed the cultured cell CB gene expression profile, the NO and ET-1 signaling pathways were highly enriched, and these two signaling pathways interfered with the protein expression of each other.

Funder

Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3