G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis

Author:

Steury Michael D.1,Kang Ho Jun1,Lee Taehyung1,Lucas Peter C.2,McCabe Laura R.1ORCID,Parameswaran Narayanan1ORCID

Affiliation:

1. Department of Physiology, Michigan State University, East Lansing, Michigan

2. Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2+/+) and GRK2 heterozygous (GRK+/−) mice in their drinking water for 7 days. As predicted, GRK2+/− mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2+/+ vs. 11% loss in GRK2+/−). lower disease activity index (GRK2+/+ 9.1 vs GRK2+/− 4.1), and increased colon lengths (GRK2+/+ 4.7 cm vs GRK2+/− 5.3 cm). To examine the mechanisms by which GRK2+/− mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2+/− mice compared with GRK2+/+. To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3