Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes

Author:

Jastroch Martin1,Withers Kerry2,Klingenspor Martin1

Affiliation:

1. Animal Physiology, Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany

2. Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, Queensland 4350, Australia

Abstract

We searched for the presence of uncoupling protein genes so far unknown in marsupials and monotremes and identified uncoupling protein 2 (UCP2) and UCP3 full-length cDNAs in libraries constructed from the marsupials Antechinus flavipes and Sminthopsis macroura. Marsupial UCP2 is 89–90% identical to rodent UCP2, whereas UCP3 exhibits 80% identity to mouse UCP3. A phylogenetic tree including all known UCPs positions the novel marsupial UCP2 and UCP3 at the base of the mammalian orthologs. In the 5′-untranslated region of UCP2 a second open reading frame encoding for a 36-amino acid peptide was identified which is highly conserved in all vertebrate UCP2 transcripts. Analysis of tissue specificity in A. flavipes with homologous cDNA probes revealed ubiquitous presence of UCP2 mRNA and striated muscle specificity of UCP3 mRNA resembling the known expression pattern in rodents. Neither UCP2 nor UCP3 gene expression was stimulated in adipose tissue and skeletal muscle of cold exposed A. flavipes. However, UCP3 mRNA expression was upregulated 6-fold in heart and 2.5-fold in skeletal muscle as reported for rodents in response to fasting. Furthermore, UCP3 mRNA seems to be coregulated with PDK4 mRNA, indicating a relation to enhanced lipid metabolism. In contrast, UCP2 gene expression was not regulated in response to fasting in adipose tissue and skeletal muscle but was diminished in the lung and increased in adipose tissue. Taken together, the sequence analysis, tissue specificity and physiological regulation suggest a conserved function of UCP2 and UCP3 during 130 million years of mammalian evolution.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3