Glucocorticoid treatment of astrocytes results in temporally dynamic transcriptome regulation and astrocyte-enriched mRNA changes in vitro

Author:

Carter Bradley S.12,Meng Fan23,Thompson Robert C.123

Affiliation:

1. Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan;

2. Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan; and

3. Department of Psychiatry, University of Michigan, Ann Arbor, Michigan

Abstract

While general effects of glucocorticoids are well established, the specific cellular mechanisms by which these hormones exert tissue-dependent effects continue to be elaborated. Diseases that demonstrate altered glucocorticoid signaling have been associated with alterations in astrocytes, yet relatively little is known about the effects of glucocorticoids upon this cell type. We have analyzed mRNA expression patterns following glucocorticoid treatment of mouse primary astrocyte cultures. Microarray analysis of cortical astrocyte cultures treated with dexamethasone over an eight-point, 24 h time course identified 854 unique genes with ≥twofold change in mRNA expression at one or more time points. Clustering analysis associated subsets of these mRNA expression changes with gene ontology categories known to be impacted by glucocorticoids. Numerous mRNAs regulated by dexamethasone were also regulated by the natural ligand corticosterone; all of the mRNAs regulated ≥twofold by corticosterone were substantially attenuated by cotreatment with the glucocorticoid receptor antagonist RU486. Of the mRNAs demonstrating ≥twofold expression change in response to both glucocorticoids, 33 mRNAs were previously associated with glucocorticoid regulation, and 36 mRNAs were novel glucocorticoid targets. All genes tested by qPCR for glucocorticoid regulation in cortical astrocyte cultures were also regulated by glucocorticoids in hippocampal astrocyte cultures (18/18). Interestingly, a portion of glucocorticoid-regulated genes were astrocyte enriched; the percentage of astrocyte-enriched genes per total number of regulated genes was highest for the early time points and steadily decreased over the time course. These findings suggest that astrocytes in vitro may initially deploy cell type-specific patterns of mRNA regulatory responses to glucocorticoids and subsequently activate additional cell type-independent responses.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3