Adult teleost heart expresses two distinct troponin C paralogs: cardiac TnC and a novel and teleost-specific ssTnC in a chamber- and temperature-dependent manner

Author:

Genge Christine E.1,Davidson William S.2,Tibbits Glen F.13

Affiliation:

1. Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, Canada;

2. Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; and

3. Cardiovascular Sciences, Child and Family Research Institute, Vancouver, Canada

Abstract

The teleost-specific whole genome duplication created multiple copies of genes allowing for subfunctionalization of isoforms. In this study, we show that the teleost cardiac Ca2+-binding troponin C (TnC) is the product of two distinct genes: cardiac TnC (cTnC, TnnC1a) and a fish-specific slow skeletal TnC (ssTnC, TnnC1b). The ssTnC gene is novel to teleosts as mammals have a single gene commonly referred as cTnC but which is also expressed in slow skeletal muscle. In teleosts, the data strongly indicate that these are two TnC genes are different paralogs. Because we determined that ssTnC exists across many teleosts but not in basal ray-finned fish (e.g., bichir), we propose that these paralogs are the result of an ancestral tandem gene duplication persisting only in teleosts. Quantification of mRNA levels was used to demonstrate distinct expression localization patterns of the paralogs within the chambers of the heart. In the adult zebrafish acclimated at 28°C, ssTnC mRNA levels are twofold greater than cTnC mRNA levels in the atrium, whereas cTnC mRNA was almost exclusively expressed in the ventricle. Meanwhile, rainbow trout acclimated at 5°C showed cTnC mRNA levels in both chambers significantly greater than ssTnC. Distinct responses to temperature acclimation were also quantified in both adult zebrafish and rainbow trout, with mRNA in both chambers shifting to express higher levels of cTnC in 18°C acclimated zebrafish and 5°C acclimated trout. Possible subfunctionalization of TnC isoforms may provide insight into how teleosts achieve physiological versatility in chamber-specific contractile properties.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3