Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways

Author:

Sozo Foula1,Wallace Megan J.1,Zahra Valerie A.1,Filby Caitlin E.1,Hooper Stuart B.1

Affiliation:

1. Department of Physiology, Monash University, Melbourne, Australia

Abstract

Growth and development of the fetal lungs is critically dependent on the degree to which the lungs are expanded by liquid; increases in fetal lung expansion accelerate lung growth, whereas reductions in lung expansion cause lung growth to cease. The mechanisms mediating expansion-induced lung growth are unknown but likely include alterations in the expression of genes that regulate lung cell proliferation. Our aim was to isolate and identify genes that are up- or downregulated by increased fetal lung expansion. In chronically catheterized fetal sheep at 126 days gestational age (GA), the left lung was expanded for 36 h, while the right lung remained at a control level of expansion. Subtraction hybridization was used to isolate genes differentially expressed between the left and right lungs. Screening of ∼6,000 clones identified 1,138 and 118 cDNA fragments that were up- and downregulated by increased lung expansion, respectively. Northern blot analyses in separate groups of control fetuses and fetuses exposed to increased lung expansion were used to verify differential expression. Increased fetal lung expansion upregulated heat shock protein 47, thrombospondin-1, TROP2, tropoelastin, and tubulin-α3 in fetal lung tissue by ∼200–300%; connective tissue growth factor and cysteine-rich angiogenic inducer 61 were increased by 20–30%. Genes downregulated by increased fetal lung expansion included CCSP-related protein-1, elongation factor-1α and vitamin D3upregulated protein 1. We conclude that an increase in fetal lung expansion differentially regulates the expression of numerous genes in lung tissue, many of which have important putative roles in lung development, while the functions of others are currently unknown.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3