Differential expression of signal transduction factors in ovarian follicle development: a functional role for betaglycan and FIBP in granulosa cells in cattle

Author:

Forde N.1,Mihm M.2,Canty M. J.1,Zielak A. E.1,Baker P. J.2,Park S.1,Lonergan P.1,Smith G. W.3,Coussens P. M.3,Ireland J. J.3,Evans A. C. O.1

Affiliation:

1. School of Agriculture Food Science and Veterinary Medicine and the Conway Institute for Biomolecular and Biomedical Research, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland

2. Division of Cell Sciences, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom

3. Department of Animal Science and Center for Animal Functional Genomics, Michigan State University, East Lansing, Michigan

Abstract

Ovarian follicles develop in groups yet individual follicles follow different growth trajectories. This growth and development are regulated by endocrine and locally produced growth factors that use a myriad of receptors and signal transduction pathways to exert their effects on theca and granulosa cells. We hypothesize that differential growth may be due to differences in hormonal responsiveness that is partially mediated by differences in expression of genes involved in signal transduction. We used the bovine dominant follicle model, microarrays, quantitative real-time PCR and RNA interference to examine this. We identified 83 genes coding for signal transduction molecules and validated a subset of them associated with different stages of the follicle wave. We suggest important roles for CAM kinase-1 and EphA4 in theca cells and BCAR1 in granulosa cells for the development of dominant follicles and for betaglycan and FIBP in granulosa cells of regressing subordinate follicles. Inhibition of genes for betaglycan and FIBP in granulosa cells in vitro suggests that they inhibit estradiol production in regressing subordinate follicles.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3