Cardiac telomere length in heart development, function, and disease

Author:

Booth S. A.1,Charchar F. J.123

Affiliation:

1. Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Balllarat, Australia;

2. Department of Physiology, The University of Melbourne, Melbourne, Australia; and

3. Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom

Abstract

Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3