Neonatal nephron loss during active nephrogenesis results in altered expression of renal developmental genes and markers of kidney injury

Author:

Raming Roman1,Cordasic Nada2,Kirchner Philipp3,Ekici Arif B.3,Fahlbusch Fabian B.1,Woelfle Joachim1,Hilgers Karl F.2,Hartner Andrea1,Menendez-Castro Carlos1ORCID

Affiliation:

1. Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany

2. Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany

3. Institute of Human Genetics, University Hospital of Erlangen, Erlangen, Germany

Abstract

Preterm neonates are at a high risk for nephron loss under adverse clinical conditions. Renal damage potentially collides with postnatal nephrogenesis. Recent animal studies suggest that nephron loss within this vulnerable phase leads to renal damage later in life. Nephrogenic pathways are commonly reactivated after kidney injury supporting renal regeneration. We hypothesized that nephron loss during nephrogenesis affects renal development, which, in turn, impairs tissue repair after secondary injury. Neonates prior to 36 wk of gestation show an active nephrogenesis. In rats, nephrogenesis is ongoing until day 10 after birth. Mimicking the situation of severe nephron loss during nephrogenesis, male pups were uninephrectomized at day 1 of life (UNXd1). A second group of males was uninephrectomized at postnatal day 14 (UNXd14), after terminated nephrogenesis. Age-matched controls were sham operated. Three days after uninephrectomy transcriptional changes in the right kidney were analyzed by RNA-sequencing, followed by functional pathway analysis. In UNXd1, 1,182 genes were differentially regulated, but only 143 genes showed a regulation both in UNXd1 and UNXd14. The functional groups “renal development” and “kidney injury” were among the most differentially regulated groups and revealed distinctive alterations. Reduced expression of candidate genes concerning renal development ( Bmp7, Gdnf, Pdgf-B, Wt1) and injury ( nephrin, podocin, Tgf-β1) were detected. The downregulation of Bmp7 and Gdnf persisted until day 28. In UNXd14, Six2 was upregulated and Pax2 was downregulated. We conclude that nephron loss during nephrogenesis affects renal development and induces a specific regulation of genes that might hinder tissue repair after secondary kidney injury.

Funder

Universitätsklinikum Erlangen

Fischer Business Technology, Munich, Germany

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3