Review of microarray experimental design strategies for genetical genomics studies

Author:

Rosa Guilherme J. M.1,de Leon Natalia2,Rosa Artur J. M.3

Affiliation:

1. Department of Dairy Science, University of Wisconsin, Madison, Wisconsin

2. Department of Agronomy, University of Wisconsin, Madison, Wisconsin

3. Department of Animal & Range Sciences, South Dakota University, Brookings, South Dakota

Abstract

Genetical genomics approaches provide a powerful tool for studying the genetic mechanisms governing variation in complex traits. By combining information on phenotypic traits, pedigree structure, molecular markers, and gene expression, such studies can be used for estimating heritability of mRNA transcript abundances, for mapping expression quantitative trait loci (eQTL), and for inferring regulatory gene networks. Microarray experiments, however, can be extremely costly and time consuming, which may limit sample sizes and statistical power. Thus it is crucial to optimize experimental designs by carefully choosing the subjects to be assayed, within a selective profiling approach, and by cautiously controlling systematic factors affecting the system. Also, a rigorous strategy should be used for allocating mRNA samples across assay batches, slides, and dye labeling, so that effects of interest are not confounded with nuisance factors. In this presentation, we review some selective profiling strategies for genetical genomics studies, including the selection of individuals for increased genetic dissimilarity and for a higher number of recombination events. Efficient designs for studying epistasis are also discussed, as well as experiments for inferring heritability of transcriptional levels. It is shown that solving an optimal design problem generally requires a numerical implementation and that the optimality criteria should be intimately related to the goals of the experiment, such as the estimation of additive, dominance, and interacting effects, localizing putative eQTL, or inferring genetic and environmental variance components associated with transcriptional abundances.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3