Elimination of allosteric modulation of myocardial KATP channels by ATP and protons in two Kir6.2 polymorphisms found in sudden cardiac death

Author:

Cui Ningren1,Li Li1,Wang Xueren1,Shi Yun1,Shi Weiwei1,Jiang Chun1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta, Georgia

Abstract

The major cause of sudden cardiac death (SCD) is ventricular arrhythmias due to unstable myocardial electrical activity in which the ATP-sensitive K+ (KATP) channels play a role. Genetic disruption of these channels predisposes the myocardium to arrhythmias. Two point mutations in the Kir6.2 subunit are found in SCD with acute myocardial infarction. Here we show evidence for the functional consequences of the P266T and R371H variants. Baseline single-channel properties, expression density, and channel modulations were studied in patch clamp. We focused on channel modulations by intracellular ATP and protons, as the concentration of these two important KATP channel regulators changes widely with hypoxic ischemia. We found that both variants expressed functional currents even though they occur at two highly conserved regions. The open state probability of P266T was twice as high as the wild-type (WT) channel, whereas its channel density was only ∼20% of the WT channel. Although the outward current was not affected by these two mutations at neutral pH, it was ∼20% lower at acidic pH in the P266T than in the WT channel. Both P266T and R371H mutations significantly reduced ATP sensitivity and increased pH sensitivity. More dramatically, allosteric regulation by intracellular ATP and protons was almost completely eliminated in the polymorphic P266T and R371H channels. Such an abnormality was seen in both inward and outward currents. Given the importance and beneficial effects of allosteric regulation in cellular responses to metabolic stress, the loss of such a regulatory mechanism in the P266T and R371H variants appears consistent with the adverse consequences occurring during acute myocardial infarction in patients.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3