Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography

Author:

Nieman Brian J.12,Flenniken Ann M.3,Adamson S. Lee34,Henkelman R. Mark12,Sled John G.12

Affiliation:

1. Mouse Imaging Centre, Hospital for Sick Children, Toronto

2. Department of Medical Biophysics, University of Toronto, Toronto

3. Centre For Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto

4. Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada

Abstract

Since genetically modified mice have become more common in biomedical research as models of human disease, a need has also grown for efficient and quantitative methods to assess mouse phenotype. One powerful means of phenotyping is characterization of anatomy in mutant vs. normal populations. Anatomical phenotyping requires visualization of structures in situ, quantification of complex shape differences between mouse populations, and detection of subtle or diffuse abnormalities during high-throughput survey work. These aims can be achieved with imaging techniques adapted from clinical radiology, such as magnetic resonance imaging and computed tomography. These imaging technologies provide an excellent nondestructive method for visualization of anatomy in live individuals or specimens. The computer-based analysis of these images then allows thorough anatomical characterizations. We present an automated method for analyzing multiple-image data sets. This method uses image registration to identify corresponding anatomy between control and mutant groups. Within- and between-group shape differences are used to map regions of significantly differing anatomy. These regions are highlighted and represented quantitatively by displacements and volume changes. This methodology is demonstrated for a partially characterized mouse mutation generated by N-ethyl- N-nitrosourea mutagenesis that is a putative model of the human syndrome oculodentodigital dysplasia, caused by point mutations in the gene encoding connexin 43.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3