Local and systemic transcriptomic responses from acute exercise induced muscle damage of the human knee extensors

Author:

Kirk Eric A.12ORCID,Castellani Christina A.34,Doherty Timothy J.56,Rice Charles L.17ORCID,Singh Shiva M.2

Affiliation:

1. Faculty of Health Sciences, School of Kinesiology, Western University, London, Ontario, Canada

2. Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada

3. Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

4. Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

5. Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

6. Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

7. Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

Abstract

Skeletal muscle is adaptable to a direct stimulus of exercise-induced muscle damage (EIMD). Local muscle gene networks and systemic circulatory factors respond to EIMD within days, mediating anti-inflammation and cellular proliferation. Here we show in humans that local EIMD of one muscle group is associated with a systemic response of gene networks that regulate muscle structure and cellular development in nonlocal homologous muscle not directly altered by EIMD. In the nondominant knee extensors of seven males, EIMD was induced through voluntary contractions against an electric motor that lengthened muscles. Neuromuscular assessments, vastus lateralis muscle biopsies, and blood draws occurred 2 days prior and 1 and 2 days after the EIMD intervention. From the muscle and blood plasma samples, RNA-Seq measured transcriptome changes of differential expression using bioinformatic analyses. Relative to the time of the EIMD intervention, local muscle that was mechanically damaged had 475 genes differentially expressed, as compared with 33 genes in the nonlocal homologous muscle. Gene and network analysis showed that activity of the local muscle was related to structural maintenance, repair, and energetic processes, whereas gene and network activities of the nonlocal muscle (that was not directly modified by the EIMD) were related to muscle cell development, stress response, and structural maintenance. Altered expression of two novel miRNAs related to the EIMD response supported that systemic factors were active. Together, these results indicate that the expression of genes and gene networks that control muscle contractile structure can be modified in response to nonlocal EIMD in humans.

Funder

Western University

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3