Affiliation:
1. Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Dummerstorf, Germany
Abstract
Several studies in a variety of breeds have reported at least two QTL for milk production traits, including milk fat synthesis on bovine chromosome 6 (BTA6), comprising a region that comparatively has been mapped to equivalent syntenic chromosome intervals in human, pig, and mouse harboring loci associated with type II diabetes and obesity-related traits. We identified the bovine peroxysome proliferator-activated receptor-γ coactivator-1α gene (PPARGC1A) as a plausible positional and functional candidate gene for a previously described QTL for milk fat yield on BTA6 because of its chromosomal position and its key role in energy, fat, and glucose metabolism. To analyze the role of the bovine PPARGC1A gene in regulation of milk fat synthesis in dairy cattle, we determined its cDNA sequence, genomic organization, chromosomal localization, and expression pattern. The bovine PPARGC1A gene is organized in 13 exons comprising 6,261 bp and is expressed at different levels in a large number of tissues. Bovine PPARGC1A cDNA and protein sequences showed substantial similarity (92–95%) to its respective orthologs from human, rat, and mouse. Screening for polymorphisms in the coding sequence, exon/intron boundaries, 5′- and 3′-untranslated regions, and promoter region of the PPARGC1A gene in sires with a different genotype at the QTL for milk fat yield as well as in a multibreed panel revealed a total of 11 polymorphic loci. A significant association between an SNP in intron 9 of the PPARGC1A gene and milk fat yield was observed in a major dairy cattle population, indicating that the PPARGC1A gene could be involved in genetic variation underlying the QTL for milk fat synthesis on BTA6.
Publisher
American Physiological Society
Reference57 articles.
1. A Genome Scan To Identify Quantitative Trait Loci Affecting Economically Important Traits in a US Holstein Population
2. Bell AW and Bauman DE.Adaptations of glucose metabolism during pregnancy and lactation.J Mammary Gland Biol Neoplasia2: 265–278, 1997.
3. Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, and Coppieters W.Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition.Genetics163: 253–266,2003.
4. Detection of genes influencing economic traits in three French dairy cattle breeds
5. The telomeric region of BTA18 containing a potential QTL region for health in cattle exhibits high similarity to the HSA19q region in humans☆☆Sequence data from this article have been deposited with the GenBank Data Libraries under accession numbers AJ459269-AJ459294.
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献