Affiliation:
1. Department of Biomedicine, Aarhus University, Aarhus, Denmark
2. Systems Biology (CUSB) Center, Chulalongkorn University, Bangkok, Thailand
Abstract
The renal aldosterone-sensitive distal tubule (ASDT) is crucial for sodium reabsorption and blood pressure regulation. The ASDT consists of the late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct. Due to difficulties in isolating epithelial cells from the ASDT in large quantities, few transcriptome studies have been performed on this segment. Moreover, no studies exist on isolated DCT2 and CNT cells (excluding intercalated cells), and the role of aldosterone for regulating the transcriptome of these specific cell types is largely unknown. A mouse model expressing eGFP in DCT2/CNT/initial cortical collecting duct (iCCD) principal cells was exploited to facilitate the isolation of these cells in high number and purity. Combined with deep RNA sequencing technology, a comprehensive catalog of chronic aldosterone-regulated transcripts from enriched DCT2/CNT/iCCD principal cells was generated. There were 257 significantly downregulated and 290 upregulated transcripts in response to aldosterone ( P < 0.05). The RNA sequencing confirmed aldosterone regulation of well-described aldosterone targets including Sgk1 and Tsc22d3. Changes in selected transcripts such as S100a1 and Cldn4 were confirmed by RT-qPCR. The RNA sequencing showed downregulation of Nr3c2 encoding the mineralocorticoid receptor (MR), and cell line experiments showed a parallel decrease in MR protein. Furthermore, a large number of transcripts encoding transcription factors were downregulated. An extensive mRNA transcriptome reconstruction of an enriched CNT/iCCD principal cell population was also generated. The results provided a comprehensive database of aldosterone-regulated transcripts in the ASDT, allowing development of novel hypotheses for the action of aldosterone.
Funder
Lundbeckfonden (Lundbeck Foundation)
Det Frie Forskningsråd (Danish Council for Independent Research)
The faculty of Health Sciences, Aarhus University
Publisher
American Physiological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献