Identification of Nogo as a novel indicator of heart failure

Author:

Bullard Tara A.1,Protack Tricia L.1,Aguilar Frédérick1,Bagwe Suveer1,Massey H. Todd2,Blaxall Burns C.1

Affiliation:

1. Cardiovascular Research Institute, Division of Cardiology, Department of Medicine

2. Department of Surgery, University of Rochester Medical Center, Rochester, New York

Abstract

Numerous genetically engineered animal models of heart failure (HF) exhibit multiple characteristics of human HF, including aberrant β-adrenergic signaling. Several of these HF models can be rescued by cardiac-targeted expression of the Gβγ inhibitory carboxy-terminus of the β-adrenergic receptor kinase (βARKct). We recently reported microarray analysis of gene expression in multiple animal models of HF and their βARKct rescue, where we identified gene expression patterns distinct and predictive of HF and rescue. We have further investigated the muscle LIM protein knockout model of HF (MLP−/−), which closely parallels human dilated cardiomyopathy disease progression and aberrant β-adrenergic signaling, and their βARKct rescue. A group of known and novel genes was identified and validated by quantitative real-time PCR whose expression levels predicted phenotype in both the larger HF group and in the MLP−/− subset. One of these novel genes is herein identified as Nogo, a protein widely studied in the nervous system, where it plays a role in regeneration. Nogo expression is altered in HF and normalized with rescue, in an isoform-specific manner, using left ventricular tissue harvested from both animal and human subjects. To investigate cell type-specific expression of Nogo in the heart, immunofluorescence and confocal microscopy were utilized. Nogo expression appears to be most clearly associated with cardiac fibroblasts. To our knowledge, this is the first report to demonstrate the relationship between Nogo expression and HF, including cell-type specificity, in both mouse and human HF and phenotypic rescue.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3