Global transcriptional differences in myokine and inflammatory genes in muscle of mature steer progeny are related to maternal lactation diet and muscle composition

Author:

Casey T. M.1ORCID,Walker J. F.2,Bhide K.2,Thimmapuram J.2,Schoonmaker J. P.1

Affiliation:

1. Department of Animal Sciences, Purdue University, West Lafayette, Indiana

2. Bioinformatics Core, Purdue University, West Lafayette, Indiana

Abstract

Steer progeny suckled by cows fed a dried distillers grains and solubles (DDGS) diet the first 3 mo of lactation were heavier during feedlot finishing and had significantly lower marbling and larger longissimus muscles than steers suckled by cows fed a control diet (CON). These differences were profound in that progeny were managed and fed identically from weaning until finishing, and findings suggest that the suckling period established the developmental program of muscle composition. Here transcriptomes of longissimus muscle were measured by next-generation sequencing to investigate whether there were any developmental clues to the differences in marbling scores and muscle content between steers suckled by DDGS ( n = 5) vs. control (CON; n = 5) diet-fed cows during lactation. There were 809 genes differentially expressed ( P-adj<0.1) between CON and DDGS muscle. Of these 636 were upregulated and 173 downregulated in DDGS relative to CON. Overall the DDGS vs. CON muscle transcriptomic signature was promyogenic and antiadipogenic. In particular, myokines/satellite cell maintenance factors were found among upregulated (LIF, CNTF, FGFB1, EPHB1) genes. The antiadipogenic signature was typified by the upregulation of anti-inflammatory cytokines and receptors (IL1RAP, IL1RL2, IL13RA2, IL1F10), and downregulation of expression of inflammation/inflammatory cytokines and receptor (TNF, IL6R, CXCL9), which suggests a selection of differentiation pathways away from adipogenic line. The upregulation of TGFB, SPP1, and INHBA supports selection of fibroblast lineage of cells. Thus, the lactation phase of production can effect meat quality by affecting transcriptional signatures that favor myogenesis and depress inflammation.

Funder

Ralph W. and Grace M. Showalter Research Trust Fund (Showalter Research Trust)

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3