Evolutionary relationships of the Tas2r receptor gene families in mouse and human

Author:

Conte Caroline1,Ebeling Martin2,Marcuz Anne1,Nef Patrick1,Andres-Barquin Pedro J.1

Affiliation:

1. Neuroscience, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland

2. Bioinformatics, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland

Abstract

The early molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCRs) encoded by the Tas2r family of taste receptor genes. The identification of the complete TAS2R receptor family repertoire in mouse and a comparative study of the Tas2r gene families in mouse and human might help to better understand bitter taste perception. We have identified, cloned, and characterized 13 new mouse Tas2r sequences, 9 of which encode putative functional bitter taste receptors. The encoded proteins are between 293 and 333 amino acids long and share between 18% and 54% sequence identity with other mouse TAS2R proteins. Including the 13 sequences identified, the mouse Tas2r family contains ∼30% more genes and 60% fewer pseudogenes than the human TAS2R family. Sequence and phylogenetic analyses of the proteins encoded by all mouse and human Tas2r genes indicate that TAS2R proteins present a lower degree of sequence conservation in mouse than in human and suggest a classification in five groups that may reflect a specialization in their functional activity to detect bitter compounds. Tas2r genes are organized in clusters in both mouse and human genomes, and an analysis of these clusters and phylogenetic analyses indicates that the five TAS2R protein groups were present prior to the divergence of the primate and rodent lineages. However, differences in subsequent evolutionary processes, including local duplications, interchromosomal duplications, divergence, and deletions, gave rise to species-specific sequences and shaped the diversity of the current TAS2R receptor families during mouse and human evolution.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3