Affiliation:
1. Neuroscience, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland
2. Bioinformatics, Pharma Research, F. Hoffmann-La Roche, Basel 4070, Switzerland
Abstract
The early molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCRs) encoded by the Tas2r family of taste receptor genes. The identification of the complete TAS2R receptor family repertoire in mouse and a comparative study of the Tas2r gene families in mouse and human might help to better understand bitter taste perception. We have identified, cloned, and characterized 13 new mouse Tas2r sequences, 9 of which encode putative functional bitter taste receptors. The encoded proteins are between 293 and 333 amino acids long and share between 18% and 54% sequence identity with other mouse TAS2R proteins. Including the 13 sequences identified, the mouse Tas2r family contains ∼30% more genes and 60% fewer pseudogenes than the human TAS2R family. Sequence and phylogenetic analyses of the proteins encoded by all mouse and human Tas2r genes indicate that TAS2R proteins present a lower degree of sequence conservation in mouse than in human and suggest a classification in five groups that may reflect a specialization in their functional activity to detect bitter compounds. Tas2r genes are organized in clusters in both mouse and human genomes, and an analysis of these clusters and phylogenetic analyses indicates that the five TAS2R protein groups were present prior to the divergence of the primate and rodent lineages. However, differences in subsequent evolutionary processes, including local duplications, interchromosomal duplications, divergence, and deletions, gave rise to species-specific sequences and shaped the diversity of the current TAS2R receptor families during mouse and human evolution.
Publisher
American Physiological Society
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献