Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome

Author:

Schumann Alexandra,Nutten Sophie,Donnicola Dominique,Comelli Elena M.,Mansourian Robert,Cherbut Christine,Corthesy-Theulaz Irène,Garcia-Rodenas Clara

Abstract

The postnatal maturation of the gut, partially modulated by bacterial colonization, ends up in the establishment of an efficient barrier to luminal antigens and bacteria. The use of broad-spectrum antibiotics in pediatric practices alters the gut bacterial colonization and, consequently, may impair the maturation of the gut barrier function. To test this hypothesis, suckling Sprague-Dawley rats received a daily intragastric gavage of antibiotic (Clamoxyl; an amoxicillin-based commercial preparation) or saline solution from postnatal day 7 (d7) until d17 or d21. Luminal microbiota composition and global gene expression profile were analyzed on samples from small intestine and colon of each group. The treatment with Clamoxyl resulted in the almost-complete eradication of Lactobacillus in the whole intestine and in a drastic reduction of colonic total aerobic and anaerobic bacteria, in particular Enterobacteriacae and Enterococcus. The global gene expression analysis revealed that Clamoxyl affects the maturation process of 249 and 149 Affymetrix probe sets in the proximal and distal small intestine, respectively, and 163 probe sets in the colon. The expression of genes coding for Paneth cell products (defensins, matrilysin, and phospholipase A2) was significantly downregulated by the Clamoxyl treatment. A significant downregulation of major histocompatibility complex (MHC) class Ib and II genes, involved in antigen presentation, was also observed. Conversely, mast cell proteases expression was upregulated. These results suggest that early treatment with a large-spectrum antibiotic deeply affects the gut barrier function at the suckling-weaning interface, a period during which the gut is challenged by an array of novel food-borne antigens.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3