eIF2α kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver

Author:

Dang Do An N.1,Kimball Scot R.1,Cavener Douglas R.2,Jefferson Leonard S.1

Affiliation:

1. Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey

2. Department of Biology, Pennsylvania State University, University Park, Pennsylvania

Abstract

In eukaryotes, selective derepression of mRNA translation through altered utilization of upstream open reading frames (uORF) or internal ribosomal entry sites (IRES) regulatory motifs following exposure to stress is regulated at the initiation stage through the increased phosphorylation of eukaryotic initiation factor 2 on its α-subunit (eIF2α). While there is only one known eIF2α kinase in yeast, general control nonderepressible 2 (GCN2), mammals have evolved to express at least four: GCN2, heme-regulated inhibitor kinase (HRI), double-stranded RNA-activated protein kinase (PKR), and PKR-like endoplasmic reticulum-resident kinase (PERK). So far, the main known distinction among these four kinases is their activation in response to different acute stressors. In the present study, we used the in situ perfused mouse liver model and hybridization array analyses to assess the general translational response to stress regulated by two of these kinases, GCN2 and PERK, and to differentiate between the downstream effects of activating GCN2 versus PERK. The resulting data showed that at least 2.5% of mouse liver mRNAs are subject to derepressed translation following stress. In addition, the data demonstrated that eIF2α kinases GCN2 and PERK differentially regulate mRNA transcription and translation, which in the latter case suggests that increased eIF2α phosphorylation is not sufficient for derepression of translation. These findings open an avenue for more focused future research toward groups of mRNAs that code for the early cellular stress response proteins.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3