PGC-1α increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4

Author:

Benton Carley R.1,Yoshida Yuko1,Lally James1,Han Xiao-Xia1,Hatta Hideo2,Bonen Arend1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

2. Department of Life Sciences, College of Arts and Sciences, University of Tokyo, Tokyo, Japan

Abstract

We examined the relationship between PGC-1α protein; the monocarboxylate transporters MCT1, 2, and 4; and CD147 1) among six metabolically heterogeneous rat muscles, 2) in chronically stimulated red (RTA) and white tibialis (WTA) muscles (7 days), and 3) in RTA and WTA muscles transfected with PGC-1α-pcDNA plasmid in vivo. Among rat hindlimb muscles, there was a strong positive association between PGC-1α and MCT1 and CD147, and between MCT1 and CD147. A negative association was found between PGC-1α and MCT4, and CD147 and MCT4, while there was no relationship between PGC-1α or CD147 and MCT2. Transfecting PGC-1α-pcDNA plasmid into muscle increased PGC-1α protein (RTA +23%; WTA +25%) and induced the expression of MCT1 (RTA +16%; WTA +28%), but not MCT2 and MCT4. As a result of the PGC-1α-induced upregulation of MCT1 and its chaperone CD147 (+29%), there was a concomitant increase in the rate of lactate uptake (+20%). In chronically stimulated muscles, the following proteins were upregulated, PGC-1α in RTA (+26%) and WTA (+86%), MCT1 in RTA (+61%) and WTA (+180%), and CD147 in WTA (+106%). In contrast, MCT4 protein expression was not altered in either RTA or WTA muscles, while MCT2 protein expression was reduced in both RTA (−14%) and WTA (−10%). In these studies, whether comparing oxidative capacities among muscles or increasing their oxidative capacities by PGC-1α transfection and chronic muscle stimulation, there was a strong relationship between the expression of PGC-1α and MCT1, and PGC-1α and CD147 proteins. Thus, MCT1 and CD147 belong to the family of metabolic genes whose expression is regulated by PGC-1α in skeletal muscle.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3