Cardiac mitochondrial proteomic expression in inbred rat strains divergent in survival time after hemorrhage

Author:

Klemcke Harold G.1,DeKroon Robert M.23,Mocanu Mihaela24,Robinette Jennifer B.24,Alzate Oscar243

Affiliation:

1. U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas;

2. Systems Proteomics Core Laboratory, University of North Carolina, Chapel Hill, North Carolina;

3. Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina

4. Program of Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina; and

Abstract

We have previously identified inbred rat strains differing in survival time to a severe controlled hemorrhage (StaH). In efforts to identify cellular mechanisms and ultimately genes that are important contributors to enhanced STaH, we conducted a study to characterize potential differences in cardiac mitochondrial proteins in these rats. Inbred rats from three strains [Brown Norway/Medical College of Wisconsin (BN); Dark Agouti (DA), and Fawn Hooded Hypertensive (FHH)] with different StaH (DA = FHH > BN) were assigned to one of three treatment groups ( n = 4/strain): nonoperated controls, surgically catheterized rats, or rats surgically catheterized and hemorrhaged 24 h postsurgery. Rats were euthanized 30 min after handling or 30 min after initiation of a 26 min hemorrhage. After euthanasia, hearts were removed and mitochondria isolated. Differential protein expression was determined using 2D DIGE-based Quantitative Intact Proteomics and proteins identified by MALDI/TOF mass spectrometry. Hundreds of proteins (791) differed among inbred rat strains ( P ≤ 0.038), and of these 81 were identified. Thirty-eight were unique proteins and 43 were apparent isoforms. For DA rats (longest STaH), 36 proteins increased and 30 decreased compared with BN (shortest STaH). These 81 proteins were associated with lipid (e.g., acyl CoA dehydrogenase) and carbohydrate (e.g., fumarase) metabolism, oxidative phosphorylation (e.g., ubiquinol-cytochrome C reductase), ATP synthesis (F1ATPase), and H2S synthesis (3-mercaptopyruvate sulfurtransferase). Although we cannot make associations between these identified mitochondrial proteins and StaH, our data do provide evidence for future candidate proteins with which to consider such associations.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3