Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows

Author:

Khan Daulat Raheem1,Landry David A.1,Fournier Éric1,Vigneault Christian2,Blondin Patrick2,Sirard Marc-André1

Affiliation:

1. Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada; and

2. L'Alliance Boviteq Incorporated, Saint-Hyacinthe, Québec, Canada

Abstract

Oocyte developmental competence in superstimulated cows is dependent in part on the duration of the FSH coasting. FSH coasting refers to superstimulation with FSH (2 days of endogenous FSH following follicle ablation and 3 days of FSH injections) followed by no FSH for a specific duration. The optimal duration varies among individuals. FSH coasting appears to modulate the transcriptome of different follicular compartments, which cooperate as a single functional unit. However, the integrative effects of FSH coasting on different follicular compartments remain ambiguous. Meta-analysis of three independent transcriptome studies, each focused on a single cell type (granulosa, cumulus, and oocyte) during FSH coasting, allowed the identification of 12 gene clusters with similar time-course expression patterns in all three compartments. Network analysis identified HNF4A (involved in metabolic functions) and ELAVL1 (an RNA-binding protein) as hub genes regulated respectively upward and downward in the clusters enriched at the optimal coasting time, and APP (involved in mitochondrial functions) and COPS5 (a member of the COP9 signalosome) as hub genes regulated respectively upwards and downwards in the clusters enriched progressively throughout the coasting period. We confirmed the effects on HNF4A downstream targets ( TTR, PPL) and other hub genes ( ELAVL1, APP, MYC, and PGR) in 30 cows with RT-quantitative PCR. The correlation of hub gene expression levels with FSH coasting indicated that a combination of these genes could predict oocyte competence with 83% sensitivity, suggesting that they are potential biomarkers of follicle differentiation. These findings could be used to optimize FSH coasting on an individual basis.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3