Profiling expression changes of genes associated with temperature and sex during high temperature-induced masculinization in the Nile tilapia brain

Author:

Zhao Yan1,Mei Yuan1,Chen Hong Ju1,Zhang Li Tao2,Wang Hui1,Ji Xiang Shan1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China

2. Department of Imaging, Taian Central Hospital Number 29, Taian, Shangdong, China

Abstract

Fish sex-determining mechanisms can be classified as genotypic (GSD), temperature (TSD), or genotypic plus temperature effects (GSD+TE). Previous studies have shown that culturing water temperature during thermosensitive periods (TSP) could affect the expression of many genes in the gonad in some fish. However, few studies have focused on gene expression changes in the brain after temperature treatment during TSP in fish species. In this study, three families were developed by crossing XX neomales with XX females and one of them was used for transcriptome analysis. The results showed that a total of 105, 3164 and 4666 DEGs were respectively obtained in FC (female control) vs. FT (high temperature-treated females at TSP), FC vs. MC (male control), and MC vs. FT comparison groups. By profiling analysis, we show that the mRNA expression levels of 16 differentially expressed genes (DEGs) exhibited significant downregulation or upregulation after high temperature treatment and reached a similar level as that in MC. Among the 16 DEGs, LOC100699848 (lysine specific demethylase 6A) and Jarid2 contained JmjC domain, showing the possible important role of JmjC domain in response to temperature treatment in Nile tilapia. Kdm6b (lysine demethylase 6B) and Jarid2 have been shown to play important roles in reptile TSD, showing the relative conservation of underlying regulation mechanisms between TSD in reptile and TSD or GSD+TE in fish species. Finally, the transcriptome profiling was validated by quantitative real-time PCR in nine selected genes. These results provide a direction for investigating the GSD+TE molecular mechanism in fish species.

Funder

National Natural Science Foundation of China (NSFC)

Natural Science Foundation of Shandong Province (Natural Science Foundation of Shandong)

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3