Sex-specific gene expression in the BXD mouse liver

Author:

Gatti Daniel M.1,Zhao Ni1,Chesler Elissa J.2,Bradford Blair U.1,Shabalin Andrey A.3,Yordanova Roumyana4,Lu Lu5,Rusyn Ivan1

Affiliation:

1. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina;

2. Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee;

3. Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, North Carolina;

4. Bristol-Myers Squibb Research and Development, Princeton, New Jersey; and

5. Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, Memphis, Tennessee

Abstract

Differences in clinical phenotypes between the sexes are well documented and have their roots in differential gene expression. While sex has a major effect on gene expression, transcription is also influenced by complex interactions between individual genetic variation and environmental stimuli. In this study, we sought to understand how genetic variation affects sex-related differences in liver gene expression by performing genetic mapping of genomewide liver mRNA expression data in a genetically defined population of naive male and female mice from C57BL/6J, DBA/2J, B6D2F1, and 37 C57BL/6J × DBA/2J (BXD) recombinant inbred strains. As expected, we found that many genes important to xenobiotic metabolism and other important pathways exhibit sexually dimorphic expression. We also performed gene expression quantitative trait locus mapping in this panel and report that the most significant loci that appear to regulate a larger number of genes than expected by chance are largely sex independent. Importantly, we found that the degree of correlation within gene expression networks differs substantially between the sexes. Finally, we compare our results to a recently released human liver gene expression data set and report on important similarities in sexually dimorphic liver gene expression between mouse and human. This study enhances our understanding of sex differences at the genome level and between species, as well as increasing our knowledge of the molecular underpinnings of sex differences in responses to xenobiotics.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3