Author:
Lemay Anne-Marie,Haston Christina K.
Abstract
The genetic basis of susceptibility to pulmonary fibrosis is largely unknown. Initially, in this study, loci regulating the response of bleomycin-induced pulmonary fibrosis were mapped using a set of recombinant congenic strains bred from pulmonary fibrosis-resistant A/J and susceptible C57BL/6J (B6) mice. Linkage was identified (logarithm of the odds score = 4.9) on chromosome 9, and other suggestive loci were detected. The putative loci included alleles from both the B6 and A/J strains as increasing the fibrosis response of congenic mice. Gene expression analysis with microarrays revealed 3,304 genes or expressed sequence tags to be differentially expressed ( P < 0.01) in lung tissue between bleomycin-treated B6 and A/J mice, and 246 of these genes mapped to potential susceptibility loci. Pulmonary genes differentially expressed between bleomycin-treated B6 and A/J mice included those of heparin binding and extracellular matrix deposition pathways. A review of available genomic sequences revealed 809 (43% of total) genes in the linkage intervals to have variations predicted to alter the encoded proteins or their regulation, 68 (8.4%) of which were also differentially expressed. Genomic approaches were combined to produce a set of candidate genes that may influence susceptibility to bleomycin-induced pulmonary fibrosis in the A/J:B6 mouse model.
Publisher
American Physiological Society
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献