Human endogenous retroviruses: our genomic fossils and companions

Author:

Stein Richard A.1ORCID,DePaola Rosalie V.2

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States

2. Department of Obstetrics and Gynecology, Lenox Hill Hospital, New York, New York, United States

Abstract

Approximately 8% of the human genome, over four times more than its protein-coding regions, comprises sequences of viral origin that are known as human endogenous retroviral elements (HERVs). Present in the genome of all human cells, HERVs resulted from the integration of now-extinct exogenous retroviruses into mammalian ancestor germ cells or their precursors on several occasions, sometimes as long as tens of millions of years ago. Most HERVs have become silenced because of mutations such as substitutions, insertions, or deletions, and as a result of epigenetic changes, and are vertically transmitted in the population. Considered for a long time to be part of the “junk DNA,” HERVs were shown, in more recent years, to perform critical functions in the host. Two of the very few HERVs known to encode functional proteins, syncytin-1 and syncytin-2, are critical during embryogenesis, when they contribute to the formation of the placenta and facilitate tolerance of the maternal immune system toward the developing fetus. Homologs of syncytin-encoding genes were described in several other species, and it appears that during evolution they were stably endogenized into the respective genomes on multiple occasions and became co-opted for critical physiological functions. The aberrant expression of HERVs has been linked to conditions that include infectious, autoimmune, malignant, and neurological diseases. HERVs, our genomic fossils and storytellers, provide a fascinating and somewhat mysterious insight into our co-evolution with viruses, and will undoubtedly offer many teachings, surprises, and paradigm changes for years to come.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3