Induction of dendritic cell-like phenotype in macrophages during foam cell formation

Author:

Cho Hyung Jun12,Shashkin Pavel3,Gleissner Christian A.34,Dunson Dane3,Jain Nitin3,Lee Jae K.1,Miller Yury5,Ley Klaus364

Affiliation:

1. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia

2. Department of Statistics, Korea University, Seoul, Korea

3. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia

4. Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia

5. Department of Medicine, University of California, San Diego, California

6. Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia

Abstract

Foam cell formation from monocyte-derived macrophages is a hallmark of atherosclerotic lesions. Aspects of this process can be recapitulated in vitro by exposing M-CSF-induced or platelet factor 4 (CXCL4)-induced macrophages to oxidized (ox) or minimally modified (mm) low density lipoprotein (LDL). We measured gene expression in peripheral blood mononuclear cells, monocytes, and macrophages treated with CXCL1 (GRO-α) or CCL2 (MCP-1), as well as foam cells induced by native LDL, mmLDL, or oxLDL using 22 Affymetrix gene chips. Using an advanced Bayesian error-pooling approach and a heterogeneous error model with a false discovery rate <0.05, we found 5,303 of 22,215 probe sets to be significantly regulated in at least one of the conditions. Among a subset of 917 candidate genes that were preselected for their known biological functions in macrophage foam-cell differentiation, we found that 290 genes met the above statistical criteria for significant differential expression patterns. While many expected genes were found to be upregulated by LDL and oxLDL, very few were induced by mmLDL. We also found induction of unexpected genes, most strikingly MHC-II and other dendritic cell markers such as CD11c. The gene expression patterns in response to oxLDL were similar in M-CSF-induced and CXCL4-induced macrophages. Our findings suggest that LDL and oxLDL, but not mmLDL, induce a dendritic cell-like phenotype in macrophages, suggesting that these cells may be able to present antigens and support an immune response.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3