Novel QTLs for HDL levels identified in mice by controlling forApoa2allelic effects: confirmation of a chromosome 6 locus in a congenic strain

Author:

Welch Carrie L.1,Bretschger Sara12,Wen Ping-Zi3,Mehrabian Margarete3,Latib Nashat1,Fruchart-Najib Jamila4,Fruchart Jean Charles4,Myrick Christy5,Lusis Aldons J.367

Affiliation:

1. Division of Molecular Medicine, Department of Medicine

2. Institute of Human Nutrition, Columbia University, New York, New York 10032

3. Departments of Medicine

4. Department of Atherosclerosis, Pasteur Institute, Lille 59019, France

5. University of Florida, Gainesville, Florida 32610

6. Microbiology and Molecular Genetics

7. Molecular Biology Institute, University of California, Los Angeles, California 90095

Abstract

Atherosclerosis is a complex disease resulting from the interaction of multiple genes, including those causing dyslipidemia. Relatively few of the causative genes have been identified. Previously, we identified Apoa2 as a major determinant of high-density lipoprotein cholesterol (HDL-C) levels in the mouse model. To identify additional HDL-C level quantitative trait loci (QTLs), while controlling for the effect of the Apoa2 locus, we performed linkage analysis in 179 standard diet-fed F2mice derived from strains BALB/cJ and B6.C- H25c(a congenic strain carrying the BALB/c Apoa2 allele). Three significant QTLs and one suggestive locus were identified. A female-specific locus mapping to chromosome 6 (Chr 6) also exhibited effects on plasma non-HDL-C, apolipoprotein AII (apoAII), apoB, and apoE levels. A Chr 6 QTL was independently isolated in a related congenic strain (C57BL/6J vs. B6.NODc6: P = 0.003 and P = 0.0001 for HDL-C and non-HDL-C levels, respectively). These data are consistent with polygenic inheritance of HDL-C levels in the mouse model and provide candidate loci for HDL-C and non-HDL-C level determination in humans.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3