Signatures of B-cell receptor diversity in B lymphocytes following Epstein-Barr virus transformation

Author:

Lai Meimei123,Wang Qiongdan123,Lu Yutian123,Xu Xi123,Xia Ying123,Tu Mengyun123,Liu Yanqing123,Zhang Qi123,Peng Ying23,Zheng Xiaoqun123

Affiliation:

1. Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

2. School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China

3. Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China

Abstract

Epstein-Barr virus (EBV) is a widespread human virus that establishes latent infection, potentially leading to tumors, hematological disorders, and other severe diseases. EBV infections are associated with diverse symptoms and affect various organs; therefore, early diagnosis and treatment are crucial. B cell receptor (BCR) repertoires of B cell surface immunoglobulins have been widely studied for their association with various infectious diseases. However, the specific genetic changes that modulate the BCR repertoires after an EBV infection are still poorly understood. In this study, we employed high-throughput sequencing (HTS) to investigate the diversity of BCR repertoires in an EBV-transformed lymphoblastic cell line (LCL). Compared with the noninfected control B cell line, the LCL exhibited a decrease in overall BCR diversity but displayed an increase in the expansion of some dominant rearrangements such as IGHV4-31/IGHJ4, IGHV4-59/IGHJ4, IGHV5-51/IGHJ3, and IGHV3-74/IGHJ3. A higher frequency of occurrence of these rearrangement types was confirmed in patients with EBV infection. Interestingly, the IGHV3-74 rearrangement was only detected in EBV-infected children, suggesting that our experimental observations were not coincidental. In addition, we identified a highly dominant consensus motif, CAR(xRx)YGSG(xYx)FD, in complementarity-determining region 3 (CDR3) sequences of the heavy chain in the LCL. Our findings demonstrated the utility of HTS technology for studying the variations in signature motifs of the BCR repertoires after EBV infection. We propose that the analysis of BCR repertoire sequences represents a promising method for diagnosing early EBV infections and developing novel antibody- and vaccine-based therapies against such infections.

Funder

Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)

Zhejiang Provincial Science and Technology Project of China

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3