Differential expression of putative transbilayer amphipath transporters

Author:

HALLECK MARGARET S.1,LAWLER JOSEPH F.2,BLACKSHAW SETH2,GAO LING1,NAGARAJAN PRIYA1,HACKER COLEEN1,PYLE SCOTT1,NEWMAN JASON T.1,NAKANISHI YOSHINOBU3,ANDO HIROSHI3,WEINSTOCK DANIEL4,WILLIAMSON PATRICK5,SCHLEGEL ROBERT A.1

Affiliation:

1. Department of Biochemistry and Molecular Biology

2. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

3. Department of Pharmaceutical Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920–0934, Japan

4. Department of Veterinary Science, Penn State University, University Park, Pennsylvania 16802

5. Department of Biology, Amherst College, Amherst, Massachusetts 01002

Abstract

Halleck, Margaret S., Joseph F. Lawler, Jr., Seth Blackshaw, Ling Gao, Priya Nagarajan, Coleen Hacker, Scott Pyle, Jason T. Newman, Yoshinobu Nakanishi, Hiroshi Ando, Daniel Weinstock, Patrick Williamson, and Robert A. Schlegel. Differential expression of putative transbilayer amphipath transporters. Physiol. Genomics 1: 139–150, 1999.—The aminophospholipid translocase transports phosphatidylserine and phosphatidylethanolamine from one side of a bilayer to another. Cloning of the gene encoding the enzyme identified a new subfamily of P-type ATPases, proposed to be amphipath transporters. As reported here, mammals express as many as 17 different genes from this subfamily. Phylogenetic analysis reveals the genes to be grouped into several distinct classes and subclasses. To gain information on the functions represented by these groups, Northern analysis and in situ hybridization were used to examine the pattern of expression of a panel of subfamily members in the mouse. The genes are differentially expressed in the respiratory, digestive, and urogenital systems, endocrine organs, the eye, teeth, and thymus. With one exception, all of the genes are highly expressed in the central nervous system (CNS); however, the pattern of expression within the CNS differs substantially from gene to gene. These results suggest that the genes are expressed in a tissue-specific manner, are not simply redundant, and may represent isoforms that transport a variety of different amphipaths.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3