Affiliation:
1. Research Unit Molecular Biology, Research Institute for the Biology of Farm Animals, Dummerstorf
2. Lehrstuhl für Tierzucht der Technischen Universität München, Freising, Germany
Abstract
A quantitative trait locus (QTL) affecting milk fat percentage has been mapped to the centromeric end of the bovine chromosome 14 (BTA14). This genomic area includes the DGAT1 gene, which encodes acyl-CoA:diacylglycerol acyltransferase 1, the key enzyme of triglyceride biosynthesis. Genetic and biochemical studies led to the identification of the nonconservative DGAT1-K232A polymorphism as a causal mutation for the QTL. In addition to this, another polymorphism in the 5′-regulatory region of this gene, the DGAT1 variable number of tandem repeat (VNTR), also showed a strong association with milk fat percentage. This promoter VNTR polymorphism affects the number of potential Sp1 binding sites and therefore might have an impact on DGAT1 expression and also milk fat content. Hence, the DGAT1 VNTR polymorphism might be another causal mutation for the BTA14 QTL. However, evidence for Sp1 binding to this polymorphic site and for the capability of DGAT1 VNTR alleles to stimulate gene expression was lacking. In the current work Sp1-VNTR interactions were analyzed by EMSA. In addition, effects of DGAT1 VNTR alleles on gene expression were measured with reporter gene analyses. Conclusions from the results are that 1) the DGAT1 VNTR sequence is indeed a target for Sp1 binding; 2) DGAT1 VNTR alleles can stimulate gene expression in vitro and probably in vivo as well; and 3) although the stimulating effects of the different DGAT1 VNTR alleles did not show significant differences in vitro, their effects on transcription might be different in the chromatin context existing in vivo.
Publisher
American Physiological Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献