Alleles of the bovine DGAT1 variable number of tandem repeat associated with a milk fat QTL at chromosome 14 can stimulate gene expression

Author:

Fürbass Rainer1,Winter Andreas2,Fries Ruedi2,Kühn Christa1

Affiliation:

1. Research Unit Molecular Biology, Research Institute for the Biology of Farm Animals, Dummerstorf

2. Lehrstuhl für Tierzucht der Technischen Universität München, Freising, Germany

Abstract

A quantitative trait locus (QTL) affecting milk fat percentage has been mapped to the centromeric end of the bovine chromosome 14 (BTA14). This genomic area includes the DGAT1 gene, which encodes acyl-CoA:diacylglycerol acyltransferase 1, the key enzyme of triglyceride biosynthesis. Genetic and biochemical studies led to the identification of the nonconservative DGAT1-K232A polymorphism as a causal mutation for the QTL. In addition to this, another polymorphism in the 5′-regulatory region of this gene, the DGAT1 variable number of tandem repeat (VNTR), also showed a strong association with milk fat percentage. This promoter VNTR polymorphism affects the number of potential Sp1 binding sites and therefore might have an impact on DGAT1 expression and also milk fat content. Hence, the DGAT1 VNTR polymorphism might be another causal mutation for the BTA14 QTL. However, evidence for Sp1 binding to this polymorphic site and for the capability of DGAT1 VNTR alleles to stimulate gene expression was lacking. In the current work Sp1-VNTR interactions were analyzed by EMSA. In addition, effects of DGAT1 VNTR alleles on gene expression were measured with reporter gene analyses. Conclusions from the results are that 1) the DGAT1 VNTR sequence is indeed a target for Sp1 binding; 2) DGAT1 VNTR alleles can stimulate gene expression in vitro and probably in vivo as well; and 3) although the stimulating effects of the different DGAT1 VNTR alleles did not show significant differences in vitro, their effects on transcription might be different in the chromatin context existing in vivo.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3