Functional genomics of the rat neuromedin U receptor 1 reveals a naturally occurring deleterious allele

Author:

Panetta Rosemarie1,Meury Luc1,Cao Chang Qing1,Puma Carole1,Mennicken Françoise1,Cassar Paul A.1,Laird Jennifer12,Groblewski Thierry1

Affiliation:

1. AstraZeneca Research and Development, CNS & Pain Innovative Medicines Science Unit, Montreal (Ville Saint-Laurent), Quebec, Canada; and

2. Department of Pharmacology & Experimental Therapeutics and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada

Abstract

Neuromedin U (NMU) plays an important role in a number of physiological processes, but the relative contribution of its two known receptors, NMUR1 and NMUR2, is still poorly understood. Here we report the existence of a SNP T1022→A (Val341→Glu) in the third exon of the rat Nmur1 gene that leads to an inactive receptor. This SNP is present within the coding region of the highly conserved NPXXY motif found within all class A type G protein-coupled receptors and translates to an NMUR1 receptor that is not expressed on the cell surface. Genetic analysis of the Nmur1 gene in a population of Sprague-Dawley rats revealed that this strain is highly heterogeneous for the inactivating polymorphism. The loss of functional NMUR1 receptors in Sprague-Dawley rats homozygous for the inactive allele was confirmed by radioligand binding studies on native tissue expressing NMUR1. The physiological relevance of this functional genomics finding was examined in two nociceptive response models. The pronociceptive effects of NMU were abolished in rats lacking functional NMUR1 receptors. The existence of naturally occurring NMUR1-deficient rats provides a novel and powerful tool to investigate the physiological role of NMU and its receptors. Furthermore, it highlights the importance of verifying the NMUR1 single nucleotide polymorphism status for rats used in physiological, pharmacological or toxicological studies conducted with NMUR1 modulators.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3