Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis

Author:

Aplin Alfred C.1,Gelati Maurizio2,Fogel Eric3,Carnevale Edvige1,Nicosia Roberto F.13

Affiliation:

1. Department of Pathology, University of Washington, Seattle, Washington;

2. Laboratory of Neurobiology and Neuroregenerative Medicine-“Carlo Besta” Institute, Milan, Italy; and

3. Division of Pathology and Laboratory Medicine, Veterans Administration Puget Sound Health Care System, Seattle, Washington

Abstract

The purpose of this study was to identify novel transcriptional events occurring in the aortic wall before angiogenesis. We used a defined tissue culture system that takes advantage of the capacity of rat aortic rings to generate neovessels ex vivo in response to angiogenic factor stimulation. Total RNA isolated from aortic rings 18 h posttreatment with angiopoietin (Ang)-1 or vascular endothelial growth factor (VEGF) was used to probe oligonucleotide microarrays. Many genes were up- or downregulated by either Ang-1 or VEGF, with a subset being affected by treatment with both growth factors. Grouping of genes by biological function revealed that Ang-1 and VEGF both upregulated a host of immune-related genes including many inflammatory cytokines. A mixture of the Ang-1- and VEGF-induced cytokines stimulated the spontaneous angiogenic response of aortic rings and was synergistic with a low dose of recombinant VEGF. This effect was associated with enhanced recruitment of adventitial macrophages and dendritic cells in the angiogenic outgrowths. Thus Ang-1 and VEGF activate the innate immune system of the vessel wall, stimulating the production of proangiogenic inflammatory cytokines before the emergence of neovessels. This hitherto unreported feature of the angiogenic response might represent an important early component of the cellular and molecular cascade responsible for the angiogenic response of the aortic wall.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Reference59 articles.

1. Adams NC, Tomoda T, Cooper M, Dietz G, and Hatten ME.Mice that lack astrotactin have slowed neuronal migration.Development129: 965–972, 2002.

2. Afuwape AO, Kiriakidis S, and Paleolog EM.The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis.Histol Histopathol17: 961–972, 2002.

3. Basic local alignment search tool

4. NCBI GEO: mining millions of expression profiles--database and tools

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3